

Available at [www.sciencedirect.com](http://www.sciencedirect.com)

# Metabolism

[www.metabolismjournal.com](http://www.metabolismjournal.com)


## Effects of leptin and adiponectin on pancreatic $\beta$ -cell function

Yong-ho Lee<sup>a,b</sup>, Faidon Magkos<sup>c,d</sup>, Christos S. Mantzoros<sup>c,e,f</sup>, Eun Seok Kang<sup>a,b,c,g,h,\*</sup>

<sup>a</sup> Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea

<sup>b</sup> Department of Medicine, Graduate School Yonsei University, Seoul, South Korea

<sup>c</sup> Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

<sup>d</sup> Department of Nutrition and Dietetics, Harokopio University, Athens, Greece

<sup>e</sup> Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA

<sup>f</sup> Endocrinology Section, VA Boston Healthcare System, Boston, MA, USA

<sup>g</sup> Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea

<sup>h</sup> Brain Korea 21 for Medical Science, Yonsei University College of Medicine, Seoul, South Korea

### ARTICLE INFO

#### Article history:

Received 2 December 2010

Accepted 18 April 2011

### ABSTRACT

Leptin and adiponectin are hormones secreted from adipocytes that have important roles in metabolism and energy homeostasis. This review evaluates the effects of leptin and adiponectin on  $\beta$ -cell function by analyzing and compiling results from human clinical trials and epidemiologic studies as well as in vitro and in vivo experiments. Leptin has been shown to inhibit ectopic fat accumulation and thereby prevent  $\beta$ -cell dysfunction and protect the  $\beta$ -cell from cytokine- and fatty acid-induced apoptosis. However, leptin suppresses insulin gene expression and secretion as well as glucose transport into the  $\beta$ -cell. Adiponectin stimulates insulin secretion by enhancing exocytosis of insulin granules and upregulating the expression of the insulin gene; however, this effect depends on the prevailing glucose concentration and status of insulin resistance. In addition, adiponectin has antiapoptotic properties in  $\beta$ -cells. Available evidence concerning the role of these adipokines on insulin secretion, insulin gene expression, and apoptosis is not always entirely consistent; and many fundamental questions remain to be answered by future studies.

© 2011 Elsevier Inc. All rights reserved.

### 1. Introduction

Leptin and adiponectin are 2 important peptide hormones secreted by adipocytes that are involved in the regulation of metabolism and energy homeostasis. Although the hypothalamus has been identified as an important target organ for leptin to regulate food intake and energy expenditure, leptin is also known to exert direct actions in various peripheral tissues, including the pancreas. Leptin receptors

are present in pancreatic  $\beta$ -cells [1]; and although a number of studies have been performed to elucidate the effects of leptin on  $\beta$ -cells during the past years, results have been controversial. Adiponectin induces fatty acid oxidation and glucose uptake, and suppresses gluconeogenesis in muscle and liver, thereby improving peripheral insulin sensitivity. In addition, adiponectin has antiatherogenic and anti-inflammatory properties, whereas leptin has proatherogenic and proinflammatory properties. Most studies have focused on the

Author contributions: YL, FM, and ESK: wrote the paper; CM: study supervision and critical revision.

\* Corresponding author. Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Tel.: +1 617 667 2805 (office); fax: +1 617 667 2896. Severance Hospital Diabetes Center, Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea. Tel.: +82 2228 1968 (office); fax: +82 2 393 6884.

E-mail addresses: [ekang@bidmc.harvard.edu](mailto:ekang@bidmc.harvard.edu), [edgo@yuhs.ac](mailto:edgo@yuhs.ac) (E.S. Kang).

action of adiponectin in skeletal muscle, liver, and adipose tissue, whereas relatively fewer and rather inconsistent results are available regarding the “cross talk” between adiponectin and  $\beta$ -cells.

The purpose of this review is to investigate the complex relationship between pancreatic  $\beta$ -cells and these 2 important adipokines. Human clinical and epidemiologic studies as well as in vitro and in vivo experiments are reviewed and analyzed to present the current status of knowledge with respect to the role of leptin and adiponectin in  $\beta$ -cell function.

## 2. Effects of leptin on pancreatic $\beta$ -cells

### 2.1. In vitro studies

Leptin receptors are expressed in primary rat pancreatic  $\beta$ -cells and in insulinoma cell lines [2]. Although both the long (ObRb) and the short (ObRa) leptin receptor isoforms are expressed in  $\beta$ -cells [1], ObRb is thought to be the main receptor mediating the actions of leptin. ObRb is expressed in insulinoma-derived  $\beta$ -cell lines and  $\delta$ -cells [3], as well as in glucagon-producing  $\alpha$ -cells [4]. The direct effect of leptin on pancreatic insulin secretion has been examined in several studies with various leptin concentrations (1.7–167 ng/mL). In physiological concentrations (1.7–10.0 ng/mL), leptin significantly downregulates insulin secretion from  $\beta$ -cells in the presence of high glucose concentrations [1,5] and has tonic inhibitory action on insulin secretion and insulin gene expression [1,5–9]. Leptin specifically inhibits glucose-stimulated insulin secretion (GSIS) via the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) or phospholipase C/protein kinase C (PKC) pathways [5,10]. This is in agreement with the finding that leptin decreases circulating insulin concentration in fed, but not in fasted, normal mice [1]. Furthermore, studies in human islets demonstrate that leptin inhibits insulin secretion in a similar manner to that described in rodent islets [1] and that this effect is mediated by ObRb [1,6]. Experiments using islets or perfused pancreatic tissue from *ob/ob* mice demonstrate inhibitory effects of leptin on basal and glucose-induced insulin secretion [3,6]. There are several mechanisms by which leptin may suppress insulin secretion by acting directly on  $\beta$ -cells. Depolarization of the  $\beta$ -cell membrane by closure of adenosine triphosphate (ATP)-sensitive potassium ( $K_{ATP}$ ) channels in response to glucose or other insulin secretagogues is an essential step for the release of insulin from  $\beta$ -cells. Leptin hyperpolarizes the cell membrane by opening  $K_{ATP}$  channels leading to a decrease in intracellular  $Ca^{2+}$ , which is involved in the release of insulin vesicles out of the  $\beta$ -cell [3,11]. Although the exact molecular mechanism by which leptin opens  $K_{ATP}$  channels is not fully elucidated, 3 possible mechanisms have been proposed: (1) Leptin stimulates the activity of phosphodiesterase 3B (PDE3B) that hydrolyzes cAMP to AMP as well as the activity of phosphoinositide 3-kinase (PI3K), thereby reducing intracellular cAMP that is important for insulin secretion by closing  $K_{ATP}$  channels [9]. Treatment with PI3K inhibitors blocks the opening of  $K_{ATP}$  channels by leptin [11]. Similar results were obtained with selective inhibitors of PDE, which completely abolished the inhibitory effect of leptin on glucose- and

glucagon-like peptide 1 (GLP-1)-induced insulin secretion [9]. In addition, leptin can affect PI3K activity and intracellular cAMP concentration by inhibiting phosphatase activity of phosphatase and tensin homolog (PTEN) [12]. (2) Leptin stimulates the formation of long-chain acyl-CoA esters that are known to be active mediators binding and opening  $K_{ATP}$  channels in  $\beta$ -cells. This is supported by the finding that leptin treatment induces triglyceride depletion and stimulates oxidation of free fatty acids (FFA) in islet cells [13]. (3) Leptin significantly reduces glucose transport into  $\beta$ -cells, thereby decreasing intracellular concentration of ATP; and the ratio of ATP to adenosine diphosphate is also thought to directly affect the opening of  $K_{ATP}$  channels [14].

Although leptin alone does not alter the phosphorylation status of glucose transporter 2 (GLUT2), leptin inhibits GLP-1-stimulated phosphorylation of GLUT2, resulting in an attenuation of glucose transport activity [14]. This suggests that leptin may have an antagonistic role to that of GLP-1. In addition, leptin inhibits phospholipase C/PKC-induced insulin secretion via a PI3K-dependent pathway, independent of PDE3B [15]. Calcium/calmodulin-dependent protein kinase, PKA or PKC are thought to be the possible mediators involved. Adenosine monophosphate-activated protein kinase (AMPK) is also related to the function of leptin. Leptin has tissue-specific effects on AMPK, activating it in skeletal muscle [16] and adipose tissue [17] but suppressing it in the hypothalamus [18]. Adenosine monophosphate-activated protein kinase activation in  $\beta$ -cells inhibits insulin secretion and insulin gene expression [19]; however, leptin does not appear to have an effect on AMPK activity in  $\beta$ -cells [20].

Many studies have demonstrated that leptin suppresses mRNA expression of preproinsulin in mouse  $\beta$ -cell lines [1], rat  $\beta$ -cell lines [8], *ob/ob* mouse islets [21], primary rat islets [1], and human islets [21]. The effect of leptin on insulin biosynthesis and gene expression is thought to be a transcriptional process [8] and is likely independent of the activation of  $K_{ATP}$  channels because the  $K_{ATP}$  channel opener diazoxide has no effect on leptin-induced suppression of insulin gene transcription in  $\beta$ -cells. Therefore, different signal transduction pathways should be involved in the inhibitory action of leptin on insulin gene expression and insulin secretion [8]. The inhibitory effect of leptin on preproinsulin mRNA expression requires prior stimulation of insulin gene promoter activity by GLP-1 or high glucose concentrations [8,21]. In human islets, leptin stimulates the expression of suppressor of cytokine signaling (SOCS) 3, which is a known inhibitor of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway [22]. Increased SOCS3 expression by leptin inhibits STAT3/5b-dependent preproinsulin I gene promoter activity in INS-1  $\beta$ -cells [22].

Leptin has been identified as an important regulator of  $\beta$ -cell mass and cell survival, which is typically maintained by the balance between cell proliferation and cell death (including apoptosis). Studies in the leptin receptor-deficient Zucker diabetic fatty (ZDF) rats reveal that the reduction in  $\beta$ -cell mass in diabetes is primarily due to acceleration of  $\beta$ -cell death and not due to reduced proliferation [23]. Studies in this animal model demonstrate that triglyceride accumulation in islets is the cause of accelerated  $\beta$ -cell death [24]. Leptin reduces the triglyceride content of islets by increasing

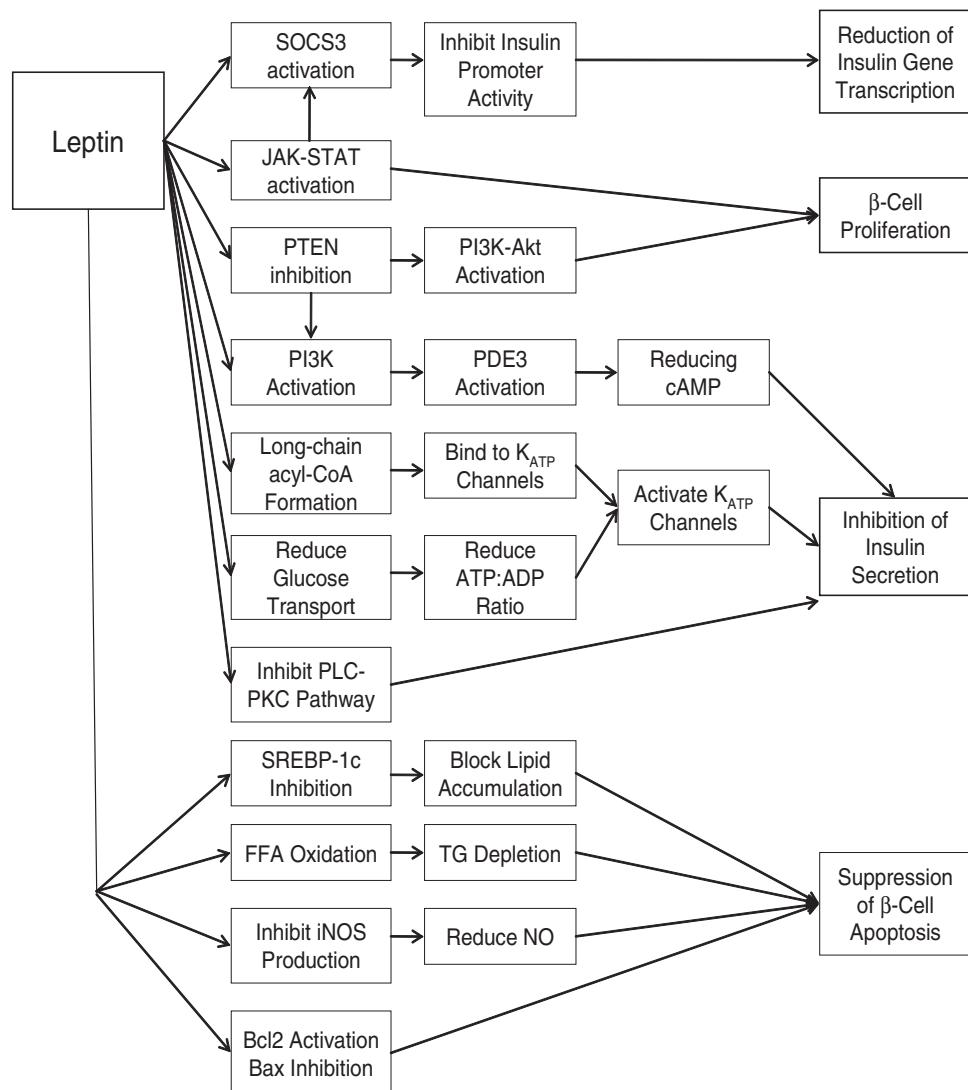
intracellular FFA oxidation, thereby suppressing  $\beta$ -cell death [13]. Furthermore, leptin at 84 ng/mL (5 nmol/L), that is, at concentrations observed in obese human subjects with leptin resistance, inhibits inducible nitric oxide synthase expression in rat islets and hence decreases the amount of nitric oxide, which is related to apoptosis by depletion of calcium stores in endoplasmic reticulum and induction of C/EBP homologue protein expression [25]. Leptin also influences the antiapoptotic factor Bcl-2. Fatty acids inhibit Bcl-2 expression, thereby leading to apoptosis in islets from leptin receptor-deficient obese ZDF rats; however, following transfection with wild-type ObR, leptin completely blocks this effect [26]. Furthermore, apoptosis induced by depletion of serum in cultured cells is prevented by leptin treatment concomitant to increased levels of Bcl-2 mRNA expression and decreased levels of Bax protein [27]. In addition to apoptosis prevention, leptin increases DNA synthesis and induces cell proliferation in MIN6 cells through activation of both the mitogen-activated protein kinase and the JAK/STAT cascades [28]. Leptin-mediated suppression of PTEN has also been involved in  $\beta$ -cell proliferation by increasing the activity of cyclin-dependent kinase [29].

There are also reports of some deleterious effects of leptin on human  $\beta$ -cells [30,31]. Interleukin (IL)-1 receptor antagonist is known to protect human islets from glucose-induced IL-1 $\beta$ -mediated  $\beta$ -cell apoptosis and to improve  $\beta$ -cell function. Long-term exposure to leptin reduced the expression of IL-1 receptor agonist in  $\beta$ -cells and increased IL-1 $\beta$  secretion from macrophages residing in human islets, followed by impaired GSIS ( $\beta$ -cell dysfunction), caspase-3 activation, and  $\beta$ -cell apoptosis [30]. Furthermore, hyperleptinemia induced  $\beta$ -cell apoptosis and dysfunction through activation of the JNK pathway in human islets, whereas a JNK inhibitor abolished the unfavorable effects of leptin on apoptosis and impaired GSIS [31]. Moreover, studies in pancreas-specific leptin receptor-knockout mice demonstrate that both the number and the size of the islets were increased in the knockout mice [32,33]. However, other studies found that absence of leptin signaling does not affect mitosis of  $\beta$ -cells [32]. Therefore, the effect of leptin on  $\beta$ -cell proliferation has not been clarified; and further studies are needed.

## 2.2. In vivo studies

Leptin has been shown to protect  $\beta$ -cells from lipotoxicity in various rodent models. Adenovirus-mediated hyperleptinemia in streptozotocin-induced diabetic ZDF rats with islet transplantation prevents apoptosis of transplanted islet cells and preserves  $\beta$ -cell mass by blocking lipogenesis and lipid accumulation [34]. Hyperleptinemia inhibits the expression of lipogenic transcription factor sterol regulatory element binding protein-1c and its downstream lipogenic proteins in hepatocytes surrounding transplanted islets. However, in normal rats, hyperleptinemia induced by adenoviral gene therapy causes deprivation of both intracellular and extracellular lipids from  $\beta$ -cells, leading to  $\beta$ -cell dysfunction including suboptimal insulin secretory response to glucose [35]. This inhibition was reversibly restored by addition of FFA, underscoring the possible role of fatty acids as a signaling messenger. Recently, leptin therapy in insulin-deficient,

nonobese diabetic mice was shown to reduce blood glucose and improve lipid profile through its inhibitory action on glucagon production and expression of lipogenic and cholesterogenic transcription factors [36].


In *ob/ob* mice, intraperitoneal injection of leptin reduces insulin secretion and inhibits transcription of the preproinsulin gene [8]. Preproinsulin mRNA expression is also decreased in INS-1 cells incubated with leptin at 25 mmol/L glucose, but not 5.6 or 11.1 mmol/L glucose [8], indicating that transcriptional suppression of the insulin gene by leptin is glucose concentration dependent. Leptin inhibits insulin synthesis via transcriptional repression [21], and SOCS3 is involved in this repression of preproinsulin gene by the leptin/JAK/STAT pathway [22]. Studies in dual  $\beta$ -cell and hypothalamus-specific leptin receptor-disrupted mice demonstrate that the  $\beta$ -cell is a major target of leptin for regulating glucose homeostasis independent of obesity [33]. Whereas whole-body leptin knockout results in increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake. Unlike in *ob/ob* or *db/db* mice, these mice exhibit fasting hypoglycemia due to increased basal insulin secretion from  $\beta$ -cells [33], consistent with previous studies showing an inhibitory effect of leptin on insulin secretion. Loss of leptin receptor signaling in  $\beta$ -cells leads to increased islet areas and glucose intolerance, which might be due to impaired GSIS caused by excessive triglyceride accumulation and decreased GLUT2 expression in  $\beta$ -cells. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence  $\beta$ -cell function, independent of pathways controlling food intake, and collectively suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity. In fact, it has been demonstrated that hyperinsulinemia, not insulin resistance, is the primary pathophysiological consequence in mice lacking  $\beta$ -cell leptin signaling [37].

Studies in pancreas-specific leptin receptor knockout mice report improved glucose tolerance due to increased acute-phase insulin secretion and expanded  $\beta$ -cell mass [32]. This indicates that ablation of leptin signaling improves downstream insulin signal transduction in  $\beta$ -cells. Consistent with previous *in vitro* results, absence of leptin inhibited the induction of SOCS-3, which decreased preproinsulin expression, resulting in elevated fasting insulin concentration in the knockout mice. Notably, compared with control mice, knockout mice were more susceptible to high-fat diet leading to impaired  $\beta$ -cell function, poor compensatory islet growth, and glucose intolerance, suggesting a crucial role for leptin signaling in  $\beta$ -cell protection from lipotoxicity.

The effects of leptin on pancreatic  $\beta$ -cells delineated from *in vitro* and *in vivo* experiments in animal models are depicted in Fig. 1.

## 2.3. Human studies

Fat mass is the major determinant of plasma leptin concentrations in humans, and leptin levels directly correlate with body fat. Animal studies suggest that leptin inhibits insulin secretion and insulin gene expression. However, several cross-sectional studies in human subjects report that plasma leptin levels are positively associated with insulin



**Fig. 1 – Schematic representation of the studied pathways of the effects of leptin on pancreatic  $\beta$ -cells.**

concentration and  $\beta$ -cell secretory function in healthy young adults [38,39] as well as in children [40]. In addition, fasting leptin concentration was more closely related to insulin secretory capacity of  $\beta$ -cells in healthy female subjects regardless of obesity [41,42]. Furthermore, significant positive correlations were found between fasting insulin and leptin in patients with type 2 diabetes mellitus [43]. These findings may be explained by the abundant experimental and clinical evidence showing that long-term treatment with insulin increases plasma leptin concentration in both humans and rodents [44–46]. As  $\beta$ -cells release more insulin to compensate for the underlying insulin resistance caused by increased body fat, insulin directly stimulates the synthesis and secretion of leptin [47], which may, in turn, regulate insulin release by a negative feedback mechanism in  $\beta$ -cells. The observation that obese subjects have greater leptin but also insulin concentrations indicates that there is state of leptin resistance [48]. Pancreatic leptin resistance in obesity might account for this loss of repressive control of insulin secretion by leptin [7]. Leptin resistance in  $\beta$ -cells results in abnormal insulin

secretion in the fasting state and after feeding and leads to hyperinsulinemia, which could lead to the exhaustion and failure of  $\beta$ -cells [7,49]. Likewise, epidemiologic data demonstrate a strong association between leptin and insulin resistance in middle-aged subjects [50]. In leptin resistance, not only are the protective effects of leptin on  $\beta$ -cells attenuated; but also long-term exposure to leptin induces  $\beta$ -cell apoptosis via IL-1 $\beta$  signaling pathways [30].  $\beta$ -Cell apoptosis is thus augmented; and eventually, islets lose the compensatory action to insulin resistance, and type 2 diabetes mellitus ensues.

One cross-sectional study with overweight adolescents reported that leptin was independently associated with insulin resistance, but not with insulin secretion, possibly due to pancreatic leptin resistance [51]. The effect of leptin on insulin resistance has been studied in many hypoleptinemic states such as congenital leptin deficiency [52], lipodystrophic syndrome [53], highly active antiretroviral therapy-induced lipodystrophy [54], and hypothalamic amenorrhea [55]. In these hypoleptinemic states, leptin treatment reduces insulin

levels and enhances insulin sensitivity by activating insulin-sensitive peripheral tissues, including the liver and adipose tissue [56], as well as by decreasing body weight and fat mass [57]. In addition, leptin replacement therapy was effective in ameliorating insulin resistance in patients with type 1 diabetes mellitus on a background of acquired generalized lipodystrophy [58]. Based on previous findings in rodents, hyperinsulinemia may precede the development of insulin resistance. Therefore, the correction of hyperinsulinemia with leptin therapy may be the underlying factor for the metabolic improvements in some of the hypoleptinemic conditions.

To date, several interventional studies have been performed to evaluate the effects and safety of leptin administration in lipoatrophic or obese patients with hypoleptinemia. Leptin replacement to children with congenital leptin deficiency remarkably ameliorates hyperinsulinemia and hyperlipidemia [59,60]. Recent randomized trials demonstrate that combination treatment with an amylin analog and human recombinant leptin significantly decreases not only body weight but also insulin levels in obese subjects [61]. With regard to hypoleptinemic men with human immunodeficiency virus-associated lipoatrophy, several clinical trials have shown that administration of recombinant leptin improves insulin resistance and suppresses fasting insulin concentration [54,62,63].

### 3. Effects of adiponectin on pancreatic $\beta$ -cells

#### 3.1. In vitro studies

Following the discovery of adiponectin, 2 adiponectin receptors (AdR-1 and AdR-2) were cloned. Both AdR-1 and AdR-2 are abundantly expressed in  $\beta$ -cells [64], with AdR-1 being the predominant isoform [65,66]. Given that globular adiponectin has a stronger affinity for AdR-1, which is the dominant receptor in  $\beta$ -cells, the globular domain of adiponectin might be a potent and effective fragment affecting  $\beta$ -cell function.

The direct effect of adiponectin on insulin secretion in  $\beta$ -cells has been examined in several studies but with variable and inconsistent results. Although leptin only rescued fatty acid-mediated suppression of GSIS, globular adiponectin completely restored cytokine- and fatty acid-induced impairments in GSIS, indicating that adiponectin might protect  $\beta$ -cell dysfunction from autoimmunity or lipotoxicity [67]. Okamoto et al [68] demonstrated that adiponectin augments insulin secretion from isolated mouse islets by stimulating exocytosis of insulin granules without affecting ATP generation,  $K_{ATP}$  channels, membrane potential,  $Ca^{2+}$  influx, or activation of AMPK. Long-term treatment (24 hours) with both globular and full-length adiponectin augmented GSIS in isolated mouse islets and increased expression of the insulin gene, as well as *Pdx-1* and *MafA* [66], which are crucial transcriptional activators involved in the production of insulin and maintenance of  $\beta$ -cell viability. However, another study found a 45% decrease in *Pdx-1* expression in BRIN-BD11 cells incubated with globular adiponectin [65]. Winzell et al [69] showed a dual effect of adiponectin on insulin secretion in insulin-resistant mouse islets, which was dependent on prevailing glucose levels. In

insulin-resistant islets, adiponectin inhibited insulin secretion at low glucose concentrations, but stimulated insulin secretion at high glucose concentrations, whereas insulin secretion in islets from normal mice was not affected by adiponectin. Experiments with human islets demonstrate that full-length adiponectin does not affect basal insulin secretion or GSIS [70].

Similar to the antiapoptotic effect of leptin on  $\beta$ -cells, adiponectin partially protects  $\beta$ -cells from IL-1 $\beta$ /interferon- $\gamma$  or palmitate-induced apoptosis [67]. Another study showed that adiponectin prevents  $\beta$ -cell apoptosis against long-term serum deprivation and glucotoxicity [66,67]. These effects are mediated by both MEK-extracellular signal-regulated kinase (ERK) 1/2 and PI3K-Akt activation [66]. However, other studies reported that adiponectin does not prevent basal fatty acid-induced  $\beta$ -cell apoptosis of human islets, although it induces phosphorylation of acetyl-CoA carboxylase and subsequently increases lipid oxidation [70]. Globular adiponectin causes a significant ERK1/2-dependent increase in cell viability and a significant increase in *Pdx-1* expression in rat  $\beta$ -cell lines; however, this does not appear to protect the  $\beta$ -cells from apoptosis induced by serum depletion [65], in contrast to other reports [66,67].

Adenosine monophosphate-activated protein kinase is activated by adiponectin, resulting in inhibition of acetyl-CoA carboxylase activity by direct phosphorylation in  $\beta$ -cells [71]. Adiponectin-induced activation of AMPK inhibits glucose-stimulated lipogenesis in MIN6 cells. However, experiments with isolated mouse islets report that adiponectin does not affect the phosphorylation of AMPK at 5.6 mmol/L of glucose [68], indicating that adiponectin may not be able to activate AMPK under basal glucose concentrations because AMPK may already be activated by glucose itself [19]. In addition, globular and full-length adiponectin did not induce phosphorylation of AMPK and p38 mitogen-activated protein kinase in MIN6 cells following either short- or long-term treatment, although both forms of adiponectin stimulated ERK and Akt activation in MIN6 cells and isolated mouse islets [66]. These conflicting data may be due to differences among the various experimental conditions, for example, different prevailing glucose concentrations and duration of treatments.

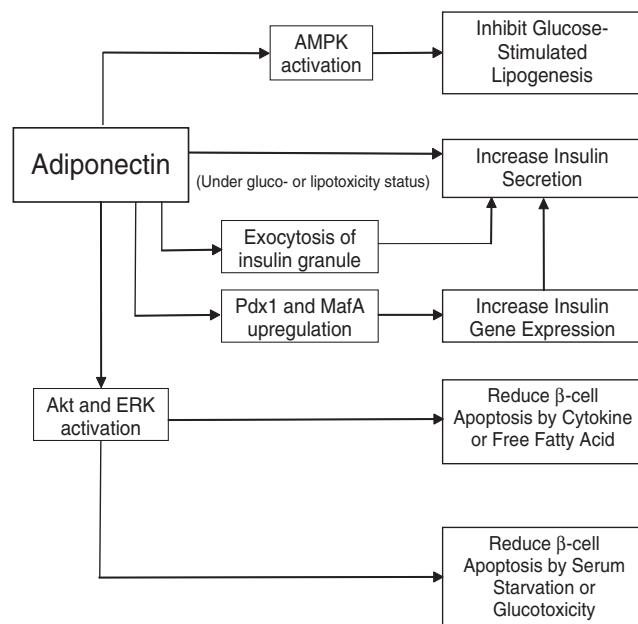
#### 3.2. In vivo studies

Adiponectin knockout mice exhibit impaired glucose tolerance in spite of normal or subnormal insulin levels [72]. Elevated blood glucose is not able to effectively stimulate insulin secretion in these mice. Globular domain adiponectin transgenic *ob/ob* mice exhibit increased insulin sensitivity and increased insulin secretion compared with nontransgenic mice [73]. This stimulatory effect of adiponectin on insulin secretion was independent of body weight. These results suggest that adiponectin has protective effects on  $\beta$ -cells. Contrary to leptin, pancreas-specific adiponectin receptor knockout animal models have not been developed so far. Despite inconsistent results from in vitro studies, in vivo studies in C57BL/6 mice demonstrate that intravenous adiponectin injection results in increased insulin secretion [68].

The studied pathways of the effects of adiponectin on pancreatic  $\beta$ -cells delineated from in vitro and in vivo experiments in animal models are depicted in Fig. 2.

### 3.3. Human studies

Currently, adiponectin is not available for administration to human subjects. Most epidemiologic studies have found that plasma adiponectin is associated with  $\beta$ -cell function as well as adiposity. An observational study in Asian children reported that adiponectin concentration inversely correlates with body weight, body mass index, and proinsulin levels in both boys and girls. In addition, insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) are inversely related to adiponectin in girls [40]. Contrary to leptin concentration, significant associations between adiponectin and insulin levels, insulin resistance, and  $\beta$ -cell function are abolished after adjustment for body weight [74]. In addition, the leptin-to-adiponectin ratio appears to be a better index of  $\beta$ -cell dysfunction than leptin or adiponectin alone, especially in females [40].


Adiponectin has been shown to positively correlate with insulin sensitivity and inversely correlate with fasting proinsulin concentration and the proinsulin-to-insulin ratio, a marker of  $\beta$ -cell failure [75]. Adiponectin concentration remains a significant independent determinant of the proinsulin-to-insulin ratio even after adjustment for percentage body fat [75]. This suggests that hypo adiponectinemia might be used as a surrogate marker for  $\beta$ -cell dysfunction. In addition, adiponectin is independently associated with insulin secretion-sensitivity index, that is, the product of insulin sensitivity and secretion, which in turn reflects  $\beta$ -cell function [76]. One study using the HOMA2 calculator [77], which is a mathematical tool for

assessing insulin sensitivity (HOMA-%S) and  $\beta$ -cell function (HOMA-%B) from fasting insulin and glucose levels by using improved modeling algorithms than the original HOMA-IR score, demonstrated that circulating adiponectin is positively correlated with insulin sensitivity as measured by HOMA-%S and inversely related to  $\beta$ -cell dysfunction as expressed by HOMA-%B in obese subjects [78]. It has also been proposed that the decline in adiponectin concentration is longitudinally associated with attenuated  $\beta$ -cell compensation for insulin resistance in women with history of gestational diabetes [79]. However, hyperglycemic clamp studies in subjects with normal glucose tolerance found no significant association between fasting plasma adiponectin concentration and insulin secretion stimulated by glucose or GLP-1 [70]. A cross-sectional study in overweight Hispanic adolescents confirmed that leptin and adiponectin are independently associated with insulin sensitivity, but not with insulin secretion [51]. Other studies reported that the insulinogenic index [80], which reflects the pancreatic insulin secretory function, was not associated with adiponectin, whereas adiponectin was strongly associated with postprandial insulin and glucose concentrations and insulin sensitivity (HOMA-%S) [81]; this implies that adiponectin might be more closely related to insulin resistance rather than  $\beta$ -cell function. The precise role of adiponectin in  $\beta$ -cell function remains to be elucidated.

## 4. Summary and future directions

At present, a considerable amount of data has been published on the effects of leptin and adiponectin on  $\beta$ -cell function. However, evidence concerning the role of these adipokines in insulin secretion and  $\beta$ -cell apoptosis are inconsistent; and many fundamental questions remain unanswered. Under circumstances of overnutrition, leptin has a vital function in regulating lipogenesis by inhibiting ectopic fat accumulation in  $\beta$ -cells, thereby preventing  $\beta$ -cell dysfunction. In rodent models, leptin suppresses insulin gene expression and insulin secretion as well as glucose transport, resulting from activation and opening of  $K_{ATP}$  channels in  $\beta$ -cells. In addition, leptin protects  $\beta$ -cells from cytokine- and fatty acid-induced apoptosis by modulating Bcl protein family. These effects are mediated by activating JAK2/STAT pathway and inhibiting PTEN, followed by activation of PI3K and PDE3B. However, not all studies confirm these findings; and a study in human islets demonstrated a proapoptotic effect of leptin via activation of the JNK pathway.

The effects of adiponectin on  $\beta$ -cell function are still speculative. Although adiponectin stimulates insulin secretion by enhancing exocytosis of insulin granules and expression of the insulin gene and its transcription factors, it apparently has a dual effect on insulin secretion that is dependent on the prevailing glucose concentration and status of insulin resistance. The antiapoptotic properties of adiponectin are mediated by activation of PI3K-Akt and MEK-ERK1/2 pathways; however, it remains unclear whether adiponectin directly activates AMPK in  $\beta$ -cells. Considering the epidemiologic evidence demonstrating a close association between adiponectin and  $\beta$ -cell dysfunction, signaling pathways



**Fig. 2 – Schematic representation of the studied pathways of the effects of adiponectin on pancreatic  $\beta$ -cells.**

downstream of adiponectin receptor and their effects on  $\beta$ -cell function remain to be determined.

Leptin and adiponectin are 2 important adipokines secreted by adipose tissue and affect metabolism by acting both centrally and peripherally. Besides the major peripheral tissues associated with glucose homeostasis (ie, liver and skeletal muscle), leptin and adiponectin may potentially affect many aspects of  $\beta$ -cell function and thereby modulate glucose control. A better understanding of the role of these adipokines in pancreatic function will likely have important implications in both research and clinical practice. Further research is needed to elucidate whether leptin will be effective in ameliorating  $\beta$ -cell dysfunction and maintaining  $\beta$ -cell mass in hypoinsulinemic subjects with insulin resistance. Considering the therapeutic potential of adiponectin on  $\beta$ -cells as well as insulin-resistant peripheral tissues, it is crucial to develop adiponectin as a new medication available for human use. Although  $\beta$ -cell dysfunction is by no means the sole pathophysiological feature of type 2 diabetes mellitus, studies to elucidate the mechanisms by which leptin and adiponectin improve  $\beta$ -cell function would provide a means to preserve  $\beta$ -cells in humans and thereby contribute toward understanding, preventing, and controlling diabetes.

## Acknowledgment

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government MEST, Basic Research Promotion Fund, NRF-2010-013-E0008.

## Conflict of Interest

Disclosure: The authors have no conflicts of interest.

## REFERENCES

- [1] Kulkarni RN, Wang ZL, Wang RM, et al. Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, *in vivo*, in mice. *J Clin Invest* 1997;100: 2729-36.
- [2] Kieffer TJ, Heller RS, Habener JF. Leptin receptors expressed on pancreatic beta-cells. *Biochem Biophys Res Commun* 1996;224:522-7.
- [3] Kieffer TJ, Heller RS, Leech CA, et al. Leptin suppression of insulin secretion by the activation of ATP-sensitive K<sup>+</sup> channels in pancreatic beta-cells. *Diabetes* 1997;46:1087-93.
- [4] Tudur E, Marroqu L, Soriano S, et al. Inhibitory effects of leptin on pancreatic alpha-cell function. *Diabetes* 2009;58:1616-24.
- [5] Poitout V, Rouault C, Guerre-Millo M, et al. Inhibition of insulin secretion by leptin in normal rodent islets of Langerhans. *Endocrinology* 1998;139:822-6.
- [6] Emilsson V, Liu YL, Cawthorne MA, et al. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. *Diabetes* 1997;46:313-6.
- [7] Kieffer TJ, Habener JF. The adiponectin axis: effects of leptin on pancreatic beta-cells. *Am J Physiol Endocrinol Metab* 2000;278:E1-4.
- [8] Seufert J, Kieffer TJ, Habener JF. Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. *Proc Natl Acad Sci U S A* 1999;96: 674-9.
- [9] Zhao AZ, Bornfeldt KE, Beavo JA. Leptin inhibits insulin secretion by activation of phosphodiesterase 3B. *J Clin Invest* 1998;102:869-73.
- [10] Chen NG, Swick AG, Romsos DR. Leptin constrains acetylcholine-induced insulin secretion from pancreatic islets of ob/ob mice. *J Clin Invest* 1997;100:1174-9.
- [11] Harvey J, Ashford ML. Insulin occludes leptin activation of ATP-sensitive K<sup>+</sup> channels in rat CRI-G1 insulin secreting cells. *J Physiol* 1998;511(Pt 3):695-706.
- [12] Ning K, Miller LC, Laidlaw HA, et al. A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells. *EMBO J* 2006;25:2377-87.
- [13] Shimabukuro M, Koyama K, Chen G, et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. *Proc Natl Acad Sci U S A* 1997;94:4637-41.
- [14] Lam NT, Cheung AT, Riedel MJ, et al. Leptin reduces glucose transport and cellular ATP levels in INS-1 beta-cells. *J Mol Endocrinol* 2004;32:415-24.
- [15] Lee JW, Swick AG, Romsos DR. Leptin constrains phospholipase C-protein kinase C-induced insulin secretion via a phosphatidylinositol 3-kinase-dependent pathway. *Exp Biol Med (Maywood)* 2003;228:175-82.
- [16] Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. *Nature* 2002;415:339-43.
- [17] Wang MY, Orci L, Ravazzola M, et al. Fat storage in adipocytes requires inactivation of leptin's paracrine activity: implications for treatment of human obesity. *Proc Natl Acad Sci U S A* 2005;102:18011-6.
- [18] Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. *Nature* 2004;428: 569-74.
- [19] da Silva Xavier G, Leclerc I, Varadi A, et al. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. *Biochem J* 2003;371:761-74.
- [20] Leclerc I, Woltersdorf WW, da Silva Xavier G, et al. Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. *Am J Physiol Endocrinol Metab* 2004;286:E1023-31.
- [21] Seufert J, Kieffer TJ, Leech CA, et al. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. *J Clin Endocrinol Metab* 1999;84:670-6.
- [22] Laubner K, Kieffer TJ, Lam NT, et al. Inhibition of preproinsulin gene expression by leptin induction of suppressor of cytokine signaling 3 in pancreatic beta-cells. *Diabetes* 2005;54:3410-7.
- [23] Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. *Diabetes* 1998;47:358-64.
- [24] Lee Y, Hirose H, Ohneda M, et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. *Proc Natl Acad Sci U S A* 1994;91:10878-82.
- [25] Okuya S, Tanabe K, Tanizawa Y, et al. Leptin increases the viability of isolated rat pancreatic islets by suppressing apoptosis. *Endocrinology* 2001;142:4827-30.
- [26] Shimabukuro M, Wang MY, Zhou YT, et al. Protection against lipoapoptosis of beta cells through leptin-dependent maintenance of Bcl-2 expression. *Proc Natl Acad Sci U S A* 1998;95:9558-61.

[27] Brown JE, Dunmore SJ. Leptin decreases apoptosis and alters BCL-2:Bax ratio in clonal rodent pancreatic beta-cells. *Diabetes Metab Res Rev* 2007;23:497–502.

[28] Tanabe K, Okuya S, Tanizawa Y, et al. Leptin induces proliferation of pancreatic beta cell line MIN6 through activation of mitogen-activated protein kinase. *Biochem Biophys Res Commun* 1997;241:765–8.

[29] Uchida T, Nakamura T, Hashimoto N, et al. Deletion of *Cdkn1b* ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. *Nat Med* 2005;11:175–82.

[30] Maedler K, Sergeev P, Ehses JA, et al. Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. *Proc Natl Acad Sci U S A* 2004;101:8138–43.

[31] Maedler K, Schulthess FT, Bielman C, et al. Glucose and leptin induce apoptosis in human  $\beta$ -cells and impair glucose-stimulated insulin secretion through activation of c-Jun N-terminal kinases. *FASEB J* 2008;22:1905–13.

[32] Morioka T, Asilmaz E, Hu J, et al. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. *J Clin Invest* 2007;117:2860–8.

[33] Covey SD, Wideman RD, McDonald C, et al. The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. *Cell Metab* 2006;4:291–302.

[34] Lee Y, Ravazzola M, Park B, et al. Metabolic mechanisms of failure of intraportally transplanted pancreatic beta-cells in rats: role of lipotoxicity and prevention by leptin. *Diabetes* 2007;56:2295–301.

[35] Koyama K, Wang G, Chen MY, et al. Beta-Cell function in normal rats made chronically hyperleptinemic by adenovirus-leptin gene therapy. *Diabetes* 1997;46:1276–80.

[36] Wang M, Chen L, Clark GO, et al. Leptin therapy in insulin-deficient type I diabetes. *Proc Natl Acad Sci U S A* 2010;107:4813–9.

[37] Gray SL, Donald C, Jetha A, et al. Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic  $\beta$ -cell leptin signaling. *Endocrinology* 2010;151:4178–86.

[38] Echwald SM, Clausen JO, Hansen T, et al. Analysis of the relationship between fasting serum leptin levels and estimates of beta-cell function and insulin sensitivity in a population sample of 380 healthy young Caucasians. *Eur J Endocrinol* 1999;140:180–5.

[39] Pardini VC, Victoria IM, Rocha SM, et al. Leptin levels, beta-cell function, and insulin sensitivity in families with congenital and acquired generalized lipomatropic diabetes. *J Clin Endocrinol Metab* 1998;83:503–8.

[40] Hung YJ, Chu NF, Wang SC, et al. Correlation of plasma leptin and adiponectin with insulin sensitivity and beta-cell function in children — the Taipei Children Heart Study. *Int J Clin Pract* 2006;60:1582–7.

[41] Abbasi F, Carantoni M, McLaughlin T, et al. Plasma insulin concentration is more tightly linked to plasma leptin concentration than is the body mass index. *Metab Clin Exp* 2000;49:544–7.

[42] Ahm B, Larsson H. Leptin — a regulator of islet function? Its plasma levels correlate with glucagon and insulin secretion in healthy women. *Metab Clin Exp* 1997;46:1477–81.

[43] Wauters M, Considine R, Lofgren A, et al. Associations of leptin with body fat distribution and metabolic parameters in non-insulin-dependent diabetic patients: no effect of apolipoprotein E polymorphism. *Metabolism* 2000;49:724–30.

[44] Boden G, Chen X, Kolaczynski JW, et al. Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects. *J Clin Invest* 1997;100:1107–13.

[45] Kolaczynski JW, Nyce MR, Considine RV, et al. Acute and chronic effects of insulin on leptin production in humans: studies in vivo and in vitro. *Diabetes* 1996;45:699–701.

[46] Koopmans SJ, Frolich M, Gribnau EH, et al. Effect of hyperinsulinemia on plasma leptin concentrations and food intake in rats. *Am J Physiol* 1998;274:E998–E1001.

[47] Saladin R, De Vos P, Guerre-Millo M, et al. Transient increase in obese gene expression after food intake or insulin administration. *Nature* 1995;377:527–9.

[48] Zhang Y, Scarpone PJ. The role of leptin in leptin resistance and obesity. *Physiol Behav* 2006;88:249–56.

[49] Seufert J. Leptin effects on pancreatic beta-cell gene expression and function. *Diabetes* 2004;53(Suppl 1):S152–8.

[50] Ukkola O, Kesniemi YA. Leptin and high-sensitivity C-reactive protein and their interaction in the metabolic syndrome in middle-aged subjects. *Metab Clin Exp* 2007;56:1221–7.

[51] Koebnick C, Roberts CK, Shaibi GQ, et al. Adiponectin and leptin are independently associated with insulin sensitivity, but not with insulin secretion or beta-cell function in overweight Hispanic adolescents. *Horm Metab Res* 2008;40:708–12.

[52] Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. *N Engl J Med* 1999;341:879–84.

[53] Shimomura I, Hammer RE, Ikemoto S, et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. *Nature* 1999;401:73–6.

[54] Lee JH, Chan JL, Sourlas E, et al. Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipodystrophy and metabolic syndrome induced by the highly active antiretroviral therapy. *J Clin Endocrinol Metab* 2006;91:2605–11.

[55] Welt CK, Chan JL, Bullen J, et al. Recombinant human leptin in women with hypothalamic amenorrhea. *N Engl J Med* 2004;351:987–97.

[56] Kim YB, Uotani S, Pierroz DD, et al. In vivo administration of leptin activates signal transduction directly in insulin-sensitive tissues: overlapping but distinct pathways from insulin. *Endocrinology* 2000;141:2328–39.

[57] Moran SA, Patten N, Young JR, et al. Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy. *Metab Clin Exp* 2004;53:513–9.

[58] Park JY, Chong AY, Cochran EK, et al. Type 1 diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effect of long-term leptin therapy. *J Clin Endocrinol Metab* 2008;93:26–31.

[59] Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. *J Clin Invest* 2002;110:1093–103.

[60] Gibson WT, Farooqi IS, Moreau M, et al. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. *J Clin Endocrinol Metab* 2004;89:4821–6.

[61] Ravussin E, Smith SR, Mitchell JA, et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. *Obesity (Silver Spring)* 2009;17:1736–43.

[62] Mulligan K, Khatami H, Schwarz JM, et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipodystrophy and hypoleptinemia. *J Clin Endocrinol Metab* 2009;94:1137–44.

[63] Magkos F, Brennan A, Sweeney L, et al. Leptin replacement improves postprandial glycemia and insulin sensitivity

in human immunodeficiency virus-infected lipoatrophic men treated with pioglitazone: a pilot study. *Metabolism* 2010.

[64] Kharroubi I, Rasschaert J, Eizirik DL, et al. Expression of adiponectin receptors in pancreatic beta cells. *Biochem Biophys Res Commun* 2003;312:1118-22.

[65] Brown JE, Conner AC, Digby JE, et al. Regulation of beta-cell viability and gene expression by distinct agonist fragments of adiponectin. *Peptides* 2010;31:944-9.

[66] Wijesekara N, Krishnamurthy M, Bhattacharjee A, et al. Adiponectin-induced Erk and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. *J Biol Chem* 2010.

[67] Rakatzi I, Mueller H, Ritzeler O, et al. Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. *Diabetologia* 2004;47:249-58.

[68] Okamoto M, Ohara-Imaizumi M, Kubota N, et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. *Diabetologia* 2008;51:827-35.

[69] Winzell MS, Nogueiras R, Dieguez C, et al. Dual action of adiponectin on insulin secretion in insulin-resistant mice. *Biochem Biophys Res Commun* 2004;321:154-60.

[70] Staiger K, Stefan N, Staiger H, et al. Adiponectin is functionally active in human islets but does not affect insulin secretory function or beta-cell lipoapoptosis. *J Clin Endocrinol Metab* 2005;90:6707-13.

[71] Huypens P, Moens K, Heimberg H, et al. Adiponectin-mediated stimulation of AMP-activated protein kinase (AMPK) in pancreatic beta cells. *Life Sci* 2005;77:1273-82.

[72] Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. *J Biol Chem* 2002;277:25863-6.

[73] Yamauchi T, Kamon J, Waki H, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. *J Biol Chem* 2003;278:2461-8.

[74] Jrime J, Jrime T, Ring-Dimitriou S, et al. Plasma adiponectin and insulin sensitivity in overweight and normal-weight middle-aged premenopausal women. *Metab Clin Exp* 2009;58:638-43.

[75] Bacha F, Saad R, Gungor N, et al. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and beta-cell function. *Diabetes Care* 2004;27:547-52.

[76] Retnakaran R, Hanley AJG, Raif N, et al. Adiponectin and beta cell dysfunction in gestational diabetes: pathophysiological implications. *Diabetologia* 2005;48:993-1001.

[77] Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. *Diabetes Care* 2004;27:1487-95.

[78] Chailurkit L, Chanprasertyothin S, Jongaroenprasert W, et al. Differences in insulin sensitivity, pancreatic beta cell function and circulating adiponectin across glucose tolerance status in Thai obese and non-obese women. *Endocrine* 2008;33:84-9.

[79] Xiang AH, Kawakubo M, Trigo E, et al. Declining beta-cell compensation for insulin resistance in Hispanic women with recent gestational diabetes mellitus: association with changes in weight, adiponectin, and C-reactive protein. *Diabetes Care* 2010;33:396-401.

[80] Ichikawa K, Akanuma Y, Kosaka K, et al. The effect of obesity on plasma triglycerides and fasting plasma IRI levels. Significance of insulinogenic index and glucose tolerance. *Horm Metab Res* 1977;9:429-30.

[81] So W, Tong PC, Ko GT, et al. Low plasma adiponectin level, white blood cell count and Helicobacter pylori titre independently predict abnormal pancreatic beta-cell function. *Diabetes Res Clin Pract* 2009;86:89-95.